/* * Copyright © 2013 stag019 * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include typedef uint8_t u8; u8 *compressed = NULL; int xrows = 0; int xwidth = 0; int curbit = 0; int curbyte = 0; void writebit(int bit) { if (++curbit == 8) { curbyte++; curbit = 0; } compressed[curbyte] |= bit << (7 - curbit); } void method_1(u8 *RAM) { int i; int j; int nibble_1; int nibble_2 = 0; int code_1; int code_2; int table; static int method_1[2][0x10] = { {0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 0xC, 0xD, 0xF, 0xE, 0xA, 0xB, 0x9, 0x8}, {0x8, 0x9, 0xB, 0xA, 0xE, 0xF, 0xD, 0xC, 0x4, 0x5, 0x7, 0x6, 0x2, 0x3, 0x1, 0x0} }; for (i = 0; i < xrows * xwidth * 8; i++) { j = i / xrows; j += i % xrows * xwidth * 8; if (!(i % xrows)) { nibble_2 = 0; } nibble_1 = (RAM[j] >> 4) & 0x0F; table = 0; if (nibble_2 & 1) { table = 1; } code_1 = method_1[table][nibble_1]; nibble_2 = RAM[j] & 0x0F; table = 0; if (nibble_1 & 1) { table = 1; } code_2 = method_1[table][nibble_2]; RAM[j] = (code_1 << 4) | code_2; } } // "Get the previous power of 2. Deriving the bitcount from that seems to be faster on average than using the lookup table." void RLE(int nums) { int v; int j; int bitcount; int number; bitcount = -1; v = ++nums; v++; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v -= v >> 1; v--; number = nums - v; while(v) { v >>= 1; bitcount++; } for(j = 0; j < bitcount; j++) { writebit(1); } writebit(0); for(j = bitcount; j >= 0; j--) { writebit((number >> j) & 1); } } void RLE_old(int nums) { int search; int i; int j; int bitcount; int number; static int RLE[0x10] = {0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF}; bitcount = -1; search = ++nums; while (search > 0) { for (i = 0; i < 0xF; i++) { if (RLE[i] == search) { bitcount = i; break; } } if (bitcount != -1) { break; } search--; } number = nums - RLE[bitcount]; for (j = 0; j < bitcount; j++) { writebit(1); } writebit(0); for (j = bitcount; j >= 0; j--) { writebit((number >> j) & 1); } } void data_packet(u8 *bitgroups, int bgi) { int i; for (i = 0; i < bgi; i++) { writebit((bitgroups[i] >> 1) & 1); writebit(bitgroups[i] & 1); } } int interpret_compress(u8 *RAM_1, u8 *RAM_2, int interpretation, int switchram) { u8 *_1_RAM; u8 *_2_RAM; int i; int ram; int type; int nums; u8 *bitgroups; int x; int y; int byte; int bit; int bitgroup; int bgi = 0; int ram_size = xrows * xwidth * 8; _1_RAM = (u8 *)calloc(ram_size, 1); _2_RAM = (u8 *)calloc(ram_size, 1); if (switchram) { memcpy(_1_RAM, RAM_2, ram_size); memcpy(_2_RAM, RAM_1, ram_size); } else { memcpy(_1_RAM, RAM_1, ram_size); memcpy(_2_RAM, RAM_2, ram_size); } switch(interpretation) { case 1: method_1(_1_RAM); method_1(_2_RAM); break; case 2: case 3: for (i = 0; i < xrows * xwidth * 8; i++) { _2_RAM[i] ^= _1_RAM[i]; } method_1(_1_RAM); break; } if (interpretation == 3) { method_1(_2_RAM); } curbit = 7; curbyte = 0; compressed = (u8 *)calloc(0x310, 1); compressed[0] = (xrows << 4) | xwidth; writebit(switchram); for (ram = 0; ram < 2; ram++) { type = 0; nums = 0; bitgroups = (u8 *)calloc(0x1000, 1); for (x = 0; x < xwidth; x++) { for (bit = 0; bit < 8; bit += 2) { byte = x * xrows * 8; for (y=0; y < xrows * 8; y++) { if (ram) { bitgroup = (_2_RAM[byte] >> (6 - bit)) & 3; } else { bitgroup = (_1_RAM[byte] >> (6 - bit)) & 3; } if (!bitgroup) { if (!type) { writebit(0); } else if (type == 1) { nums++; } else { data_packet(bitgroups, bgi); writebit(0); writebit(0); } type = 1; free(bitgroups); bitgroups = (u8 *)calloc(0x1000, 1); bgi = 0; } else { if (!type) { writebit(1); } else if (type == 1) { RLE(nums); } type = -1; bitgroups[bgi++] = bitgroup; nums = 0; } byte++; } } } if (type == 1) { RLE(nums); } else { data_packet(bitgroups, bgi); } if (!ram) { if (interpretation < 2) { writebit(0); } else { writebit(1); writebit(interpretation - 2); } } } free(bitgroups); free(_1_RAM); free(_2_RAM); return (curbyte + 1) * 8 + curbit; } int compress(u8 *data, int width, int height) { u8 *RAM_1; u8 *RAM_2; int i; int mode; int order; int newsize; int compressedsize; int size = -1; u8 *current = NULL; int ram_size; xrows = height; xwidth = width; ram_size = xrows * xwidth * 8; RAM_1 = (u8 *)calloc(ram_size, 1); RAM_2 = (u8 *)calloc(ram_size, 1); for (i = 0; i < xrows * xwidth * 8; i++) { RAM_1[i] = data[(i << 1)]; RAM_2[i] = data[(i << 1) | 1]; } for (mode = 1; mode < 4; mode++) { for (order = 0; order < 2; order++) { if (!(mode == 1 && order == 0)) { newsize = interpret_compress(RAM_1, RAM_2, mode, order); if (size == -1 || newsize < size) { if (current != NULL) { free(current); } current = (u8 *)calloc(0x310, 1); memcpy(current, compressed, newsize / 8); free(compressed); size = newsize; } } } } compressed = (u8 *)calloc(0x310, 1); compressedsize = size / 8; memcpy(compressed, current, compressedsize); free(current); free(RAM_1); free(RAM_2); return compressedsize; } uint8_t *transpose_tiles(uint8_t *data, int width, int height) { int i; int j; int tile_size = 0x10; int size = width * height * tile_size; u8 *transposed = calloc(size, 1); for (i = 0; i < size; i++) { j = (i / 0x10) * width * 0x10; j = (j % size) + 0x10 * (j / size) + (i % 0x10); transposed[j] = data[i]; } free(data); return transposed; } int main(int argc, char *argv[]) { int width = 0; int height = 0; int transpose = 1; if (argc != 3) { fputs("Usage: pkmncompress infile.2bpp outfile.pic\n", stderr); return EXIT_FAILURE; } char *infile = argv[1]; char *outfile = argv[2]; FILE *f = fopen(infile, "rb"); if (!f) { fprintf(stderr, "failed to open for reading: '%s'\n", infile); return EXIT_FAILURE; } fseek(f, 0, SEEK_END); int filesize = ftell(f); for (int i = 0; i < 32; i++) { width = i; height = i; if (width * height * 16 >= filesize) { break; } } if (width * height * 16 < filesize) { fprintf(stderr, "file too big: '%s' (%x)\n", infile, filesize); return EXIT_FAILURE; } if (width * height * 16 > filesize) { fprintf(stderr, "wrong filesize for '%s' (%x). must be a square image of 16-byte tiles\n", infile, filesize); return EXIT_FAILURE; } u8 *data = (u8 *)calloc(filesize, 1); fseek(f, 0, SEEK_SET); int size = fread(data, 1, filesize, f); fclose(f); if (size != filesize) { fprintf(stderr, "failed to read: '%s'\n", infile); return EXIT_FAILURE; } if (transpose) { data = transpose_tiles(data, width, height); } int compressed_size = compress(data, width, height); free(data); f = fopen(outfile, "wb"); if (!f) { fprintf(stderr, "failed to open for writing: '%s'\n", outfile); return EXIT_FAILURE; } fwrite(compressed, 1, compressed_size, f); fclose(f); free(compressed); return EXIT_SUCCESS; }