Refactor pkmncompress.c to use common.h

Fixes #349
This commit is contained in:
Rangi 2022-03-17 20:36:13 -04:00
parent 570d83b73c
commit 07df4a5f88
2 changed files with 151 additions and 369 deletions

View file

@ -1,7 +1,7 @@
.PHONY: all clean
CC := gcc
CFLAGS := -O3 -flto -std=c11 -Wall -Wextra -pedantic -Wno-missing-field-initializers
CFLAGS := -O3 -flto -std=c11 -Wall -Wextra -pedantic
tools := \
gfx \

View file

@ -14,79 +14,46 @@
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#define PROGRAM_NAME "pkmncompress"
#define USAGE_OPTS "infile.2bpp outfile.pic"
typedef uint8_t u8;
#include "common.h"
u8 *compressed = NULL;
int xrows = 0;
int xwidth = 0;
int curbit = 0;
int curbyte = 0;
uint8_t compressed[15 * 15 * 0x10];
int cur_bit;
int cur_byte;
void writebit(int bit)
{
if (++curbit == 8)
{
curbyte++;
curbit = 0;
void write_bit(int bit) {
if (++cur_bit == 8) {
cur_byte++;
cur_bit = 0;
}
compressed[curbyte] |= bit << (7 - curbit);
compressed[cur_byte] |= bit << (7 - cur_bit);
}
void method_1(u8 *RAM)
{
int i;
int j;
int nibble_1;
int nibble_2 = 0;
int code_1;
int code_2;
int table;
static int method_1[2][0x10] = {
void compress_plane(uint8_t *plane, int width) {
static int nybble_lookup[2][0x10] = {
{0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 0xC, 0xD, 0xF, 0xE, 0xA, 0xB, 0x9, 0x8},
{0x8, 0x9, 0xB, 0xA, 0xE, 0xF, 0xD, 0xC, 0x4, 0x5, 0x7, 0x6, 0x2, 0x3, 0x1, 0x0}
{0x8, 0x9, 0xB, 0xA, 0xE, 0xF, 0xD, 0xC, 0x4, 0x5, 0x7, 0x6, 0x2, 0x3, 0x1, 0x0},
};
for (i = 0; i < xrows * xwidth * 8; i++)
{
j = i / xrows;
j += i % xrows * xwidth * 8;
if (!(i % xrows))
{
nibble_2 = 0;
int ram_size = width * width * 8;
for (int i = 0, nybble_lo = 0; i < ram_size; i++) {
int m = i % width;
if (!m) {
nybble_lo = 0;
}
nibble_1 = (RAM[j] >> 4) & 0x0F;
table = 0;
if (nibble_2 & 1)
{
table = 1;
}
code_1 = method_1[table][nibble_1];
nibble_2 = RAM[j] & 0x0F;
table = 0;
if (nibble_1 & 1)
{
table = 1;
}
code_2 = method_1[table][nibble_2];
RAM[j] = (code_1 << 4) | code_2;
int j = i / width + m * width * 8;
int nybble_hi = (plane[j] >> 4) & 0xF;
int code_1 = nybble_lookup[nybble_lo & 1][nybble_hi];
nybble_lo = plane[j] & 0xF;
int code_2 = nybble_lookup[nybble_hi & 1][nybble_lo];
plane[j] = (code_1 << 4) | code_2;
}
}
// "Get the previous power of 2. Deriving the bitcount from that seems to be faster on average than using the lookup table."
void RLE(int nums)
{
int v;
int j;
int bitcount;
int number;
bitcount = -1;
v = ++nums;
void rle_encode_number(int n) {
int bit_count = -1;
int v = ++n;
v++;
v |= v >> 1;
v |= v >> 2;
@ -95,357 +62,172 @@ void RLE(int nums)
v |= v >> 16;
v -= v >> 1;
v--;
number = nums - v;
while(v) {
int number = n - v;
while (v) {
v >>= 1;
bitcount++;
bit_count++;
}
for(j = 0; j < bitcount; j++) {
writebit(1);
for (int j = 0; j < bit_count; j++) {
write_bit(1);
}
writebit(0);
for(j = bitcount; j >= 0; j--) {
writebit((number >> j) & 1);
write_bit(0);
for (int j = bit_count; j >= 0; j--) {
write_bit((number >> j) & 1);
}
}
void RLE_old(int nums)
{
int search;
int i;
int j;
int bitcount;
int number;
static int RLE[0x10] = {0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF};
void write_data_packet(uint8_t *bit_groups, int n) {
for (int i = 0; i < n; i++) {
write_bit((bit_groups[i] >> 1) & 1);
write_bit(bit_groups[i] & 1);
}
}
bitcount = -1;
search = ++nums;
while (search > 0)
{
for (i = 0; i < 0xF; i++)
{
if (RLE[i] == search)
{
bitcount = i;
break;
}
int interpret_compress(uint8_t *plane1, uint8_t *plane2, int mode, int order, int width) {
int ram_size = width * width * 8;
uint8_t *_plane1 = xmalloc(ram_size);
uint8_t *_plane2 = xmalloc(ram_size);
if (order) {
memcpy(_plane1, plane2, ram_size);
memcpy(_plane2, plane1, ram_size);
} else {
memcpy(_plane1, plane1, ram_size);
memcpy(_plane2, plane2, ram_size);
}
if (mode != 1) {
for (int i = 0; i < ram_size; i++) {
_plane2[i] ^= _plane1[i];
}
if (bitcount != -1)
{
break;
}
search--;
}
number = nums - RLE[bitcount];
for (j = 0; j < bitcount; j++)
{
writebit(1);
compress_plane(_plane1, width);
if (mode != 2) {
compress_plane(_plane2, width);
}
writebit(0);
for (j = bitcount; j >= 0; j--)
{
writebit((number >> j) & 1);
}
}
void data_packet(u8 *bitgroups, int bgi)
{
int i;
for (i = 0; i < bgi; i++)
{
writebit((bitgroups[i] >> 1) & 1);
writebit(bitgroups[i] & 1);
}
}
int interpret_compress(u8 *RAM_1, u8 *RAM_2, int interpretation, int switchram)
{
u8 *_1_RAM;
u8 *_2_RAM;
int i;
int ram;
int type;
int nums;
u8 *bitgroups;
int x;
int y;
int byte;
int bit;
int bitgroup;
int bgi = 0;
int ram_size = xrows * xwidth * 8;
_1_RAM = (u8 *)calloc(ram_size, 1);
_2_RAM = (u8 *)calloc(ram_size, 1);
if (switchram)
{
memcpy(_1_RAM, RAM_2, ram_size);
memcpy(_2_RAM, RAM_1, ram_size);
}
else
{
memcpy(_1_RAM, RAM_1, ram_size);
memcpy(_2_RAM, RAM_2, ram_size);
}
switch(interpretation)
{
case 1:
method_1(_1_RAM);
method_1(_2_RAM);
break;
case 2:
case 3:
for (i = 0; i < xrows * xwidth * 8; i++)
{
_2_RAM[i] ^= _1_RAM[i];
}
method_1(_1_RAM);
break;
}
if (interpretation == 3)
{
method_1(_2_RAM);
}
curbit = 7;
curbyte = 0;
compressed = (u8 *)calloc(0x310, 1);
compressed[0] = (xrows << 4) | xwidth;
writebit(switchram);
for (ram = 0; ram < 2; ram++)
{
type = 0;
nums = 0;
bitgroups = (u8 *)calloc(0x1000, 1);
for (x = 0; x < xwidth; x++)
{
for (bit = 0; bit < 8; bit += 2)
{
byte = x * xrows * 8;
for (y=0; y < xrows * 8; y++)
{
if (ram)
{
bitgroup = (_2_RAM[byte] >> (6 - bit)) & 3;
}
else
{
bitgroup = (_1_RAM[byte] >> (6 - bit)) & 3;
}
if (!bitgroup)
{
if (!type)
{
writebit(0);
}
else if (type == 1)
{
cur_bit = 7;
cur_byte = 0;
memset(compressed, 0, sizeof(compressed) / sizeof(*compressed));
compressed[0] = (width << 4) | width;
write_bit(order);
uint8_t bit_groups[0x1000] = {0};
int index = 0;
for (int plane = 0; plane < 2; plane++) {
int type = 0;
int nums = 0;
memset(bit_groups, 0, sizeof(bit_groups) / sizeof(*bit_groups));
for (int x = 0; x < width; x++) {
for (int bit = 0; bit < 8; bit += 2) {
for (int y = 0, byte = x * width * 8; y < width * 8; y++, byte++) {
int bit_group = ((plane ? _plane2 : _plane1)[byte] >> (6 - bit)) & 3;
if (!bit_group) {
if (!type) {
write_bit(0);
} else if (type == 1) {
nums++;
}
else
{
data_packet(bitgroups, bgi);
writebit(0);
writebit(0);
} else {
write_data_packet(bit_groups, index);
write_bit(0);
write_bit(0);
}
type = 1;
free(bitgroups);
bitgroups = (u8 *)calloc(0x1000, 1);
bgi = 0;
}
else
{
if (!type)
{
writebit(1);
memset(bit_groups, 0, sizeof(bit_groups) / sizeof(*bit_groups));
index = 0;
} else {
if (!type) {
write_bit(1);
} else if (type == 1) {
rle_encode_number(nums);
}
else if (type == 1)
{
RLE(nums);
}
type = -1;
bitgroups[bgi++] = bitgroup;
type = 2;
bit_groups[index++] = bit_group;
nums = 0;
}
byte++;
}
}
}
if (type == 1)
{
RLE(nums);
if (type == 1) {
rle_encode_number(nums);
} else {
write_data_packet(bit_groups, index);
}
else
{
data_packet(bitgroups, bgi);
}
if (!ram)
{
if (interpretation < 2)
{
writebit(0);
}
else
{
writebit(1);
writebit(interpretation - 2);
if (!plane) {
if (mode < 2) {
write_bit(0);
} else {
write_bit(1);
write_bit(mode - 2);
}
}
}
free(bitgroups);
free(_1_RAM);
free(_2_RAM);
return (curbyte + 1) * 8 + curbit;
free(_plane1);
free(_plane2);
return (cur_byte + 1) * 8 + cur_bit;
}
int compress(u8 *data, int width, int height)
{
u8 *RAM_1;
u8 *RAM_2;
int i;
int mode;
int order;
int newsize;
int compressedsize;
int size = -1;
u8 *current = NULL;
int ram_size;
xrows = height;
xwidth = width;
ram_size = xrows * xwidth * 8;
RAM_1 = (u8 *)calloc(ram_size, 1);
RAM_2 = (u8 *)calloc(ram_size, 1);
for (i = 0; i < xrows * xwidth * 8; i++)
{
RAM_1[i] = data[(i << 1)];
RAM_2[i] = data[(i << 1) | 1];
int compress(uint8_t *data, int width) {
int ram_size = width * width * 8;
uint8_t *plane1 = xmalloc(ram_size);
uint8_t *plane2 = xmalloc(ram_size);
for (int i = 0; i < ram_size; i++) {
plane1[i] = data[i * 2];
plane2[i] = data[i * 2 + 1];
}
for (mode = 1; mode < 4; mode++)
{
for (order = 0; order < 2; order++)
{
if (!(mode == 1 && order == 0))
{
newsize = interpret_compress(RAM_1, RAM_2, mode, order);
if (size == -1 || newsize < size)
{
if (current != NULL)
{
free(current);
}
current = (u8 *)calloc(0x310, 1);
memcpy(current, compressed, newsize / 8);
free(compressed);
size = newsize;
}
uint8_t current[sizeof(compressed) / sizeof(*compressed)] = {0};
int compressed_size = -1;
for (int mode = 1; mode < 4; mode++) {
for (int order = 0; order < 2; order++) {
if (mode == 1 && order == 0) {
continue;
}
int new_size = interpret_compress(plane1, plane2, mode, order, width);
if (compressed_size == -1 || new_size < compressed_size) {
compressed_size = new_size;
memset(current, 0, sizeof(current) / sizeof(*current));
memcpy(current, compressed, compressed_size / 8);
}
}
}
compressed = (u8 *)calloc(0x310, 1);
compressedsize = size / 8;
memcpy(compressed, current, compressedsize);
free(current);
free(RAM_1);
free(RAM_2);
return compressedsize;
memset(compressed, 0, sizeof(compressed) / sizeof(*compressed));
memcpy(compressed, current, compressed_size / 8);
free(plane1);
free(plane2);
return compressed_size / 8;
}
uint8_t *transpose_tiles(uint8_t *data, int width, int height)
{
int i;
int j;
int tile_size = 0x10;
int size = width * height * tile_size;
u8 *transposed = calloc(size, 1);
for (i = 0; i < size; i++)
{
j = (i / 0x10) * width * 0x10;
uint8_t *transpose_tiles(uint8_t *data, int width) {
int size = width * width * 0x10;
uint8_t *transposed = xmalloc(size);
for (int i = 0; i < size; i++) {
int j = (i / 0x10) * width * 0x10;
j = (j % size) + 0x10 * (j / size) + (i % 0x10);
transposed[j] = data[i];
}
free(data);
return transposed;
}
int main(int argc, char *argv[])
{
int main(int argc, char *argv[]) {
if (argc != 3) {
usage_exit(1);
}
long filesize;
uint8_t *data = read_u8(argv[1], &filesize);
int width = 0;
int height = 0;
int transpose = 1;
if (argc != 3)
{
fputs("Usage: pkmncompress infile.2bpp outfile.pic\n", stderr);
return EXIT_FAILURE;
}
char *infile = argv[1];
char *outfile = argv[2];
FILE *f = fopen(infile, "rb");
if (!f) {
fprintf(stderr, "failed to open for reading: '%s'\n", infile);
return EXIT_FAILURE;
}
fseek(f, 0, SEEK_END);
int filesize = ftell(f);
for (int i = 0; i < 32; i++) {
width = i;
height = i;
if (width * height * 16 >= filesize) {
for (int w = 1; w < 16; w++) {
if (filesize == w * w * 0x10) {
width = w;
break;
}
}
if (width * height * 16 < filesize) {
fprintf(stderr, "file too big: '%s' (%x)\n", infile, filesize);
return EXIT_FAILURE;
}
if (width * height * 16 > filesize) {
fprintf(stderr, "wrong filesize for '%s' (%x). must be a square image of 16-byte tiles\n", infile, filesize);
return EXIT_FAILURE;
if (!width) {
error_exit("Image is not a square, or is larger than 15x15 tiles");
}
u8 *data = (u8 *)calloc(filesize, 1);
fseek(f, 0, SEEK_SET);
int size = fread(data, 1, filesize, f);
fclose(f);
if (size != filesize) {
fprintf(stderr, "failed to read: '%s'\n", infile);
return EXIT_FAILURE;
}
if (transpose) {
data = transpose_tiles(data, width, height);
}
int compressed_size = compress(data, width, height);
data = transpose_tiles(data, width);
int compressed_size = compress(data, width);
write_u8(argv[2], compressed, compressed_size);
free(data);
f = fopen(outfile, "wb");
if (!f) {
fprintf(stderr, "failed to open for writing: '%s'\n", outfile);
return EXIT_FAILURE;
}
fwrite(compressed, 1, compressed_size, f);
fclose(f);
free(compressed);
return EXIT_SUCCESS;
return 0;
}